
 1 / 27

The road to NRK's private
Terraform registry

 2 / 27

Who am I?

● Stig Otnes Kolstad (stigok)
● Member of Hackeriet since ~2015 (?)
● Working in NRK with platform operations and SRE tasks

– Go, Python, Terraform, Kubernetes

 3 / 27

How we work together in NRK’s
platform team

● Establish best practices
● Configure and run shared infrastructure

– Network
– Monitoring
– Terraform modules

● Voluntary Admin groups that plan around and evolve specific areas
of the technology landscape
– Kubernetes
– Infrastructure as Code (IaC)
– ... and more

 4 / 27

What is Terraform?

● “A tool to codify cloud APIs into declarative config files” (ref)
● Provisions resources through Terraform providers (API clients)
● This helps to keep our infrastructure configuration

– Reuseable
– Backed up
– Tracked with commit- and changelogs
– GitOps’ed (in some cases, hopefully more)

https://www.terraform.io/

 5 / 27

HashiCorp Configuration Language

$ cat <<EOF > main.tf

provider "kubernetes" {
 config_path = "~/.kube/config"
 config_context = "my-context"
}

resource "kubernetes_namespace" "example" {
 metadata {
 name = "my-first-namespace"
 }
}

EOF

 6 / 27

Terraform CLI demonstration

$ terraform init > /dev/null
$ terraform apply
[...]
Terraform will perform the following actions:
 # kubernetes_namespace.example will be created
 + resource "kubernetes_namespace" "example" {
 + id = (known after apply)

 + metadata {
 + generation = (known after apply)
 + name = "my-first-namespace"
 + resource_version = (known after apply)
 + uid = (known after apply)
 }
 }

Plan: 1 to add, 0 to change, 0 to destroy.
Do you want to perform these actions? (yes/NO)

 7 / 27

Why are we using it?

● Reduce point-and-click to a minimum
● Track, review and validate changes (Git, GitHub and Actions)

– Automated checks
● Sanity checks using built-in Terraform commands
● Scanning IaC config using Trivy

● Backed up infrastructure configuration
● Abstractions through modules

 8 / 27

My Terraform glossary

● Terraform
– Provider: a binary file used to talk to external sources (e.g.

API’s, local programs, self-contained logic)
– Module: a collection of one or more Terraform configuration files,

often parameterised and some times reusable
– Registry: a package library holding versioned modules and

providers
– Configuration repo: a Git repository containing configuration

we actually run `terraform apply` on.
– Module repo: a Git repository containing code for one or more

modules to be included/referenced by a configuration repository

 9 / 27

In the Beginning

● Terraform mono-repo that held all shared infrastructure
● Grew bigger every day

– increasing complexity
– time to apply
– insecurity
– raised bar of entry

● A need for separation of concern (in terms of people, teams and code
responsibility)
1) New configuration repos
2) New module repos for sharing modules between them

 10 / 27

In a configuration repository

module "my_module_instance" {
 source = "git@github.com/nrkno/mymodule"
 some_param = “foo”
 team = “my-team”
}

● The ground is moving under our feet
– What version does person A have locally, and what does B have?
– Is there a newer version around?
– Where and how do I find out?
– What has changed since last time I updated, and is it safe to

upgrade?
● We need to reference specific versions

 11 / 27

How do we fix this?

● Module versioning (module repos)
– Enforce repository rules (branch restrictions)

● No direct push to main branch
● Require reviewers for pull requests
● Perform automated code checks

– Actions to run after merge
● Automatic release of new versions

• Shared workflows

 12 / 27

GitHub Actions reusable workflows

● Workflow to validate Terraform configuration (link)
– terraform fmt && terraform init && terraform validate

– Trivy vulnerability scan (link)
– Generate Terraform documentation

● Workflow for validating conventional commit messages and
automatic release of new versions (link)
– Conventional commits
– Semantic versioning (SemVer)
– with “latest” tag updates (v1.2.5 == v1.2 == v1)
– Creates a release in GitHub with a changelog attached

https://github.com/nrkno/github-workflow-terraform-config
https://github.com/aquasecurity/trivy-action
http://nrkno/github-workflow-semantic-release

 13 / 27

In a configuration repository v2

module "my_module_instance" {
 source = "git@github.com/nrkno/mymodule?ref=1.2.3"
 some_param = "foo"
 team = "my-team"
}

● The ground is moving under our feet
– What version does person A have locally, and what does B have?
– Is there a newer version around?
– Where and how do I find out?
– What has changed since last time I updated, and is it safe to

upgrade?
● We need to reference specific versions

 14 / 27

Dependabot

● Deeply integrated in GitHub
● Supports many different package managers and ecosystems
● Automatically creates pull requests with version bumps
● Terraform support since June 10th 2021

– Lockfiles (for providers) introduced in Terraform v0.14 (Dec 2020)
– Modules from a registry always referenced via a version number

 15 / 27

A private Terraform registry?

● We don’t want to publish all our modules
● Are there any private Terraform registries available?
● The Terraform Registry Protocol is actually pretty simple...
● Should we create our own?
● Can we use GitHub as a backend?
● Can we use custom authentication?

 16 / 27

Terraform Registry Protocol
- Module Source References

● A module is referenced in the configuration by a URL consisting of
hostname/namespace/name/system
– If hostname is missing, registry.terraform.io is implied
– Namespace is typically the owner of the package, or the name of

the group responsible for it (e.g. hashicorp, nrkno, cisco)
– Name is the name of the module (e.g. kubernetes-cluster)
– System is used in the official registry to differentiate individual

modules targeted at different cloud providers (i.e. systems). This
value can be anything.

module "my_module_instance" {
 source = "terraform-registry.nrk.cloud/nrkno/mymodule/generic"
 version = “1.2.3”
}

 17 / 27

Terraform Registry Protocol
- Service Discovery
source = “terraform-registry.nrk.cloud/nrkno/mymodule/generic”

$ curl https://terraform-registry.nrk.cloud/.well-known/terraform.json
{
 "modules.v1": "/v1/modules/"
}

 18 / 27

Terraform Registry Protocol
- List module versions
source = “terraform-registry.nrk.cloud/nrkno/mymodule/generic”

$ curl https://terraform-registry.nrk.cloud/v1/modules/nrkno/mymodule/generic/versions
{
 "modules": [
 {
 "versions": [
 {"version": "1.0.0"},
 {"version": "1.1.0"},
 {"version": "1.2.3"},
 {"version": "2.0.0"},
 {"version": "2.3.4"}
]
 }
]
}

 19 / 27

Terraform Registry Protocol
- Download module version
source = “terraform-registry.nrk.cloud/nrkno/mymodule/generic”

$ curl -i https://terraform-registry.nrk.cloud/v1/modules/nrkno/mymodule/generic/2.3.4/
download
HTTP/1.1 204 No Content
Content-Length: 0
X-Terraform-Get: git::ssh://git@github.com/nrkno/my-terraform-module.git?ref=2.3.4

 20 / 27

What will this solve?

● Know when a module has been updated by configuring Dependabot
● What has changed?

– Read the changelog/release notes in the GitHub release
– Determine if you need to update at all
– Know if it requires configuration changes or recreation of

resources

 21 / 27

Our private Terraform Registry
implementation

● Uses GitHub as a backend for modules and their version tags
– Searches repositories tagged with terraform-module in our org

● Clients authenticate using predefined static tokens
– direnv (.envrc) for loading environment variables (ref)

● export TF_TOKEN_terraform__registry_nrk_cloud=my-secret-password

– can be used to track repositories depending on a module
● The registry returns git+ssh:// for module URL’s, offloading end-user

authentication to GitHub’s SSH server
● Open source

– Issues discussing new features are very welcome!

https://direnv.net/

 22 / 27

Dependabot configuration

version: 2
registries:
 terraform-registry.nrk.cloud:
 type: terraform-registry
 url: https://terraform-registry.nrk.cloud
 token: ${{ secrets.PLATTFORM_TERRAFORM_REGISTRY_NRK_CLOUD }}
updates:
- package-ecosystem: terraform
 directory: "/"
 registries:
 - terraform-registry.nrk.cloud
 schedule:
 interval: daily
 time: "08:00"
 timezone: "Europe/Oslo"
 open-pull-requests-limit: 5
 reviewers:
 - nrkno/plattform

 23 / 27

In a configuration repository v3

module "my_module_instance" {
 source = "terraform-registry.nrk.cloud/nrkno/myodule/generic"
 version = “1.2.3”

 some_param = "foo"
 team = "my-team"
}

● The ground is moving under our feet
– What version does person A have locally, and what does B have?
– Is there a newer version around? We can make this better
– Where and how do I find out? We can make this better
– What has changed since last time I updated, and is it safe to

upgrade?
● We need to reference specific versions

 24 / 27

Wishes for the future

● A frontend for the registry with modules, documentation and
examples
– List of all availalable modules
– Single page documentation and examples

● Improved testing of our modules
– Automation
– Actually create and test the infrastructure described

● How to avoid/minimize spending?
● Automation to improve our daily Terraform workflow

– Atlantis
– Terraform Cloud

 25 / 27

Thoughts

● Conventional commits drives semantic versioning
● Automatically enforcing a given Git workflow in teams/organisations

is not enough. Training, tough reviews and shared understanding of
the issues around versioning is a must.

● Not having to publish new versions to a registry is nice, but brings
other issues like cache invalidation and new version discovery
strategies

● Updating the Terraform documentation is a bit annoying. The
GITHUB_TOKEN does not have write permissions to the repository
in a shared workflow. However, a deploy key can be configured.

 26 / 27

Resources

● https://github.com/nrkno/github-workflow-terraform-config/
● https://github.com/nrkno/github-workflow-semantic-release/
● https://github.com/nrkno/terraform-registry/
● https://developer.hashicorp.com/terraform/internals/module-registry-

protocol
● https://stigok.com/

https://github.com/nrkno/github-workflow-terraform-config/
https://github.com/nrkno/github-workflow-semantic-release/
https://github.com/nrkno/terraform-registry/
https://developer.hashicorp.com/terraform/internals/module-registry-protocol
https://developer.hashicorp.com/terraform/internals/module-registry-protocol
https://stigok.com/

 27 / 27

Questions

● Please ask!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

